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3. Timeline:  Analysis to begin soon after approval is obtained.  
  
4. Rationale:   
Background and rationale 
This manuscript proposal involves a collaborative effort funded through the Johns 
Hopkins University Donald W. Reynolds Clinical Cardiovascular Research Center.  
Please see the ancillary study proposal for details of the background and rationale.  We 
propose to evaluate the associations between CAPON SNP’s (and 4 other genes/loci) and 
SCD (and QT interval) in the SCD collaborative network (ARIC/CHS).  These genes/loci 
were identified from our genome wide association study. 
Genome wide analysis:  We employed a novel technology to perform genome wide 
association (GWA) studies using  ~115,000 SNPs distributed across the genome to map 
genetic determinants of SCD susceptibility. This study was performed in collaboration 
with Dr. Stefan Kaab of the Ludwig-Maximilians University in Munich, Germany in the 
KORA (“Cooperative Research in the Region of Augsburg”) population. We chose to 
study the QT interval as our first phenotype of interest since it is a continuous trait, for 
which we could sample from the extremes of a general population. In addition, known 
monogenic disorders of SCD are associated with a prolonged QT interval (Long QT 
syndrome), the QT interval is known to be moderately heritable in a general population, 
electronic measurement of the QT interval is very reliable, and QT interval is associated 
with risk for CVD events in the general population. 1,2 
To minimize false positive findings, we took a 3 stage approach. In stage 1, we chose 
individuals from each of the extremes of the QT interval (7.5th and 92.5th percentile) 
between the ages of 25 and 75 years from among 2171 women in the KORA S4 study.  
Women were selected to avoid heterogeneity due to sex difference.  Linear regression 
analysis was performed to “adjust” the QT interval for age and heart rate (RR interval) 
prior to choosing the extremes in the distribution. One hundred individuals from each 
extreme were genotyped for ~100,000 SNPs using Affymetrix Centurion arrays. While 
no single SNP reached genome-wide significance, several loci exhibited multiple SNPs 
with large differences in allele frequency between extremes of QT-interval (p <0.0001). 
In stage 2, the 10 most significant SNPs (all p <0.0001) from the genome wide screen 
were genotyped in the next 200 females from each extreme. Based on our current 
understanding of the biology of cardiac repolarization, we also selected a priori 45 
candidate genes, implicated in short QT syndrome (SQTS) or LQTS, cardiac cellular 
electrophysiology, or homologous to the selected genes, each having at least one SNP 
represented on the array within 10 kb of its 5’ or 3’ UTR.  We used a less stringent 
significance threshold for candidate gene SNPs to be followed up in stage II (p<0.01) 
since their prior probability of involvement is higher than that for anonymous markers.  
In stage III, anonymous SNPs significant at p<0.005 and candidate gene SNPs with 
p<0.01 in stage II, were genotyped in the remaining 3,366 subjects of both genders.  



Importantly, significance tests were performed separately on the men and women specific 
to stage III (i.e., excluding the 600 females analyzed in stages I and II), allowing stage III 
to serve as a validation study for stages I and II. 
One SNP, in intron 1 of the CAPON gene, a regulator of nNOS which plays a key role in 
modulating cardiac contractility, was significantly associated with QTc RAS (p <10-7, 
excluding the women in the extremes of QT) with ~5 ms difference in QTc RAS between 
the two homozygous genotype groups. The results with CAPON were validated in two 
independent samples of 2,646 subjects from Germany (KORA F3) and 1,805 subjects 
from the US Framingham Heart Study. Results of this study demonstrate the feasibility 
and the potential of genome-wide SNP association studies for identification of novel 
genes for complex traits. 
We propose to evaluate the associations between CAPON SNP’s and SCD (and QT 
interval) in the SCD collaborative network (ARIC/CHS).  Since CAPON is a large gene, 
we are unable cover it comprehensively.  We have elected to cover the region of the gene 
that showed the strongest associations with the QT interval.   Using 21 SNP’s, selected 
using the HAPMAP phase 2 data, we can cover the associated region and 1LD block 5' 
(containing OLFM2B) and 2 LD blocks 3’, including all of intron 1, exon 2, and intron 
2.  The total region covered is ~170  kb.  In addition we will evaluate the associations 
between selected SNP’s in four other genes that were associated with QT interval in the 
early stages of our genome wide association study.  The genes that we are interested in 
studying in the SCD collaborative network at this time include: 

1. CAPON   carboxy-terminal PDZ ligand of nNOS which regulates the distribution of nNOS (21 
SNPs)  

2. CACNA2D1  calcium channel alpha 2/delta subunit 1(5 SNPs)  
3. Unknown gene on chromosome 5 (QTc_5.3 )  (one SNP)  
4. KCNK1   TWIK-1 potassium channel  (one SNP)  
5. FGFR2   Fibroblast Growth Factor Receptor 2 (4 SNPs)  

  
By identifying common variants that influence QT interval and therefore ventricular 
repolarization, it is hypothesized that these same genetic variants are likely to directly 
influence risk for SCD, or at least identify genes likely to play a role in SCD.  
Identification of genomic determinants of SCD might be used in the future to target our 
most aggressive therapies towards those at greatest risk (i.e. implantable cardiac 
defibrillators, ICD) or to develop pharmacologic interventions targeting specific 
proteins.  Survival from cardiac arrest is generally less than 10%, thus early identification 
of increased risk and effective intervention is essential.  By studying large prospective 
cohorts like ARIC and CHS, we will be able to determine the attributable risk for SCD 
susceptibility genes as well as examine the role of gene-environment interactions of SCD  
5. Main Hypothesis/Study Questions:  
Specific aims:  1) Evaluate the association between specific genes/loci and sudden 
cardiac death in the SCD network (ARIC and CHS).  
2) Evaluate the association between specific genes/loci and QT interval at baseline in the 
SCD network (ARIC and CHS).  
6. Data (variables, time window, source, inclusions/exclusions):  
Sample size justification: All subjects from CHS (and ARIC) who consented to genetic 
analysis will be included in this study.  It is important to include a large sample size in 



order to minimize the likelihood of type 1 or type 2 errors.  The positive findings from 
genetic association studies are less likely to be reproduced in other populations when they 
originate from studies with a small sample size.  Since SCD is a complex phenotype, 
including the entire cohort will allow us the opportunity to compare the genotype 
frequency in the cases compared with a variety of control groups (see below). Including 
the entire cohort will allow greater power to examine rare variants or haplotypes and 
especially to analyze potential interactions and confounders.  The large cohort size is also 
necessary for us to determine absolute risks within the population and will allow a 
powerful analysis of intermediate traits such as QT interval.  
Methods: Population:  All subjects who gave informed consent to be involved in genetic 
analyses will be included in this study.  The primary analysis will compare the genotypes 
in the subjects with SCD to those who do not experience SCD during the follow-up 
period.  However, often SCD occurs as a result of an acute coronary syndrome.  We will 
compare the results of the primary analysis with that seen in secondary analyses 
comparing the genotypes of those with SCD to those with nonfatal acute coronary 
syndromes (MI and unstable angina) who do not experience SCD, and those with fatal 
CHD who do not experience SCD.  Since many people with SCD have underlying 
atherosclerosis we will also compare the genotypes in those with SCD to those with high 
carotid intima media thickness who have not yet had an event.  
   
Definition of SCD:  All cases of fatal MI and fatal CHD (both inpatient and out of 
hospital) have been reviewed to determine if they meet criteria for SCD.  Sudden cardiac 
death is defined as a sudden unexpected death that appears to be related to an arrhythmic 
etiology.  Cases of SCD are being identified as definite, or possible, which includes cases 
complicated by other co-morbidities, such as ESRD, CHF or liver failure.  For these 
cases, the patient must have been clinically stable prior to a sudden cardiac arrest .  For 
all events, the individual must have been seen alive within 24 hours and had symptoms 
for less than one hour.  
Genetic analyses:   Currently, there is no commercially available cost effective and rapid 
method to genotype numerous SNPs in hundreds to thousands of samples.  BioTrove has 
developed a novel platform for large-scale genotyping, relying upon a high-density, 
through-hole, nanotiter plate in conjunction with traditional TaqMan assays from ABI.  
This technology has the added benefit of reduced reagent usage and allows for up to 64 
SNPs per sample (32 SNPs in duplicate) to be assayed in a single step.   
Statistical analyses:  The analyses will proceed as described below with the standard 
assumptions regarding genome distributions and other assumptions as outlined:   
1. Hardy-Weinberg equilibrium among genotypes will be checked by calculating 
expected frequencies of genotypes and using the chi-square goodness-of-fit test.  
2. All analyses will first be stratified by ethnicity to test for interaction.  If no interaction 
is detected, pooled analyses will be performed.  
3.  For analyses of SCD, event times will be computed as the time to SCD.  For 
participants without SCD, censoring times will be calculated according to the last date of 
follow-up or the date of death (non-SCD).   
4.  Genotype will be coded as 0 (zero copies of the candidate allele), 1 (one copy of the 
candidate allele), or 2(two copies of the candidate allele).  An additive genetic model will 
be assumed unless indicated otherwise by results of the analysis or unless the allele 



frequency of a given candidate variant is low, in which case, a dominant model 
combining the risk of heterozygotes and homozygotes will be used.  Kaplan-Meier 
estimates of mortality will be computed, and log-rank tests will be used to compare 
curves among the genotypes.  Cox proportional hazards models will be constructed to 
control for the effects of correlated SNPs and of other potential confounders.  For 
analysis of QT intervals, mean QT intervals will be estimated and compared for the three 
genotypes at each locus using ANOVA.  Multiple linear regression models will be 
constructed to account for effects of potential confounders.  
5. We will use two popular and well-tested approaches for haplotype estimation.  The 
first approach will be a Bayesian-based method by Stephens et al. (PHASE). 3   It will be 
used to estimate and assign individual specific probabilities of haplotypes for each 
individual.  This method estimates the uncertainty associated with each phase call, and 
these probabilities will be used as weights in subsequent analyses.  Prospective analysis 
of haplotypes will be performed in a similar manner as analysis of a single SNP except 
the independent variable will be haplotype instead of genotype.  Second, we will also use 
the generalized linear model (GLM) method of Schaid et al (Haplo.glm), which employs 
an E-M algorithm to estimate phase while also estimating haplotype risk effect 
parameters in a GLM setting, allowing for adjustment of covariates and incorporation of 
interaction terms. 4 In this program, haplotype phase parameters and regression 
parameters are iteratively updated.  While using PHASE-estimated haplotypes in survival 
analysis does not account for the uncertainties of the haplotype estimations, the GLM 
method has been suggested to be less accurate and does not allow for survival analysis.  
Because neither method is perfect for analysis of haplotypes, both will be used to ensure 
consistency of results across methods.  For genes with putatively causal alleles, the 
haplotype containing those SNPs will be used as the reference group when testing for 
statistical significance; otherwise, an overall omnibus likelihood ratio test for all 
haplotypes having a null effect will be conducted.  
6. We will further examine the interactions among candidate genes, SCD, and potential 
effect modifiers, including, coronary heart disease at baseline, heart rate, age, sex, BMI, 
and common carotid and maximum internal carotid wall thickness.  We will examine the 
presence of detectable gene-gene and gene-environment interactions first by stratification 
and then by standard regression techniques.  Interactions hypothesized in the literature 
will be tested, followed by interactions between genes in the same biologic pathways.  
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